A Geometric Algorithm for Approximating Semicontinuous Function*

GERALD BEER

Department of Mathematics, California State University, Los Angeles, California 90032, U.S.A.

Communicated by E. W. Cheney

Received June 29, 1984

1. INTRODUCTION

A real valued function h defined on a topological space X is called *upper* semicontinuous (u.s.c.) if any of the following equivalent conditions is satisfied:

(1) for each $\alpha \in R$, $h^{-1}((-\infty, \alpha))$ is open in X;

(2) for each x in X and $\varepsilon > 0$ there exists a neighborhood $V(x, \varepsilon)$ of x such that $h(z) < h(x) + \varepsilon$, provided $z \in V(x, \varepsilon)$;

(3) the hypograph of h, $\{(x, \alpha): \alpha \leq h(x)\}$, is closed in $X \times R$.

We call $h: X \to R$ lower semicontinuous (l.s.c.) if -h is u.s.c. Those topological spaces for which each upper semicontinuous function is the pointwise limit of a decreasing sequence of continuous functions are the *perfectly normal spaces* [10], i.e., spaces in which each closed subset is a G_{δ} set. That such approximations exist for metric spaces was first proved by Hahn [3]. It is the purpose of this article to set forth in the context of metric spaces a natural geometric algorithm that yields such a sequence of continuous functions, beginning with any continuous function f majorizing our u.s.c. function. If f is Lipschitz, then the algorithm will generate Lipschitz functions.

Before describing the algorithm, we recall that if $h: X \to R$ is arbitrary, then the *upper envelope* h^* of h is defined as

$$h^*(x) = \sup\{\limsup_{n \to \infty} h(x_n): \lim_{n \to \infty} x_n = x\}.$$

* 1980 Mathematics Subject Classification: Primary: 26A15, 65S05; Secondary: 40A30, 41A25.

Alternatively, h^* is that function whose hypograph is the closure of the hypograph of h [6]. Thus, h^* is the smallest extended real valued u.s.c. function that majorizes h. We shall also need a metric for $X \times R$. If d is the metric for X, we employ the *box metric*:

$$\rho[(x_1, \alpha_1), (x_2, \alpha_2)] = \max\{d(x_1, x_2), |\alpha_2 - \alpha_1|\}.$$

2. The Algorithm

LEMMA 1. Let $\langle X, d \rangle$ be a metric space. Let $h: X \to R$ be arbitrary, and suppose $f \in C(X, R)$ majorizes h. Define $\varphi(f, h): X \to R$ by

$$\varphi(f, h)(x) = \inf\{\rho[(x, f(x)), (y, h(y))]: y \in X\}.$$

Then $f - \varphi(f, h)$ is continuous and majorizes h^* , the upper envelope of h. If f is Lipschitz, then so is $f - \varphi(f, h)$.

Proof. First, notice that $\varphi(f, h)(x)$ just gives the distance from (x, f(x)) to the graph of h. Since $(x, \alpha) \to$ the distance of (x, α) from the graph of h is a Lipschitz function on $X \times R$ with Lipschitz constant one and $x \to (x, f(x))$ is continuous, their composition $\varphi(f, h)$ is continuous. Suppose now that f is Lipschitz with constant $K \ge 1$. We then have $\rho[(x, f(x)), (w, f(w))] \le Kd(x, w)$ for each x and w in X. Since the difference between the distances of any two points in a metric space to a given set is less than or equal to the distance between the two points, we get

$$|\varphi(f,h)(x) - \varphi(f,h)(w)| \leq Kd(x,w),$$

whence $\varphi(f, h)$ is Lipschitz. Thus, $f - \varphi(f, h)$ is Lipschitz (with constant 2K).

To show that $f - \varphi(f, h)$ majorizes h^* , fix x in X and choose $\{x_n\}$ convergent to x for which $\lim_{n \to \infty} h(x_n) = h^*(x)$. Since f is u.s.c. and $f \ge h$, we have $f(x) - h^*(x) \ge 0$ and

$$f(x) - h^{*}(x) = \rho[(x, f(x)), (x, h^{*}(x))]$$

=
$$\sup_{k \in Z^{+}} \inf\{\rho[(x, f(x)), (x_{n}, h(x_{n}))]: n \ge k\}$$

$$\ge \inf\{\rho[(x, f(x)), (x_{n}, h(x_{n}))]: n \in Z^{+}\}$$

$$\ge \inf\{\rho[(x, f(x)), (y, h(y))]: y \in X\}$$

=
$$\varphi(f, h)(x).$$

We remark that $\varphi(f, h)$ can be the zero function even if for all x,

f(x) > h(x). For example, let X = [0, 1], let f be the zero function on X, and let $h: X \to [-1, 0)$ be given by

$$h(x) = -\frac{1}{2^n}$$
, if $x = \frac{q}{2^n}$, q an odd integer,
= -1, otherwise.

However, if h is u.s.c. at x and h(x) < f(x), then $\varphi(f, h)(x) > 0$; otherwise, for some sequence $\{x_n\}$ convergent to x, we would have $\lim_{n \to \infty} h(x_n) = f(x) > h(x)$.

If we iterate the procedure described above, we produce a decreasing sequence of functions convergent to h^* . In the sequel we shall use the notation $\varphi(f, h)$ described in Lemma 1 freely.

THEOREM 1. Let $\langle X, d \rangle$ be a metric space and let $h: X \to R$. If f is a continuous function that majorizes h, define a sequence of continuous functions $\{f_k\}$ as follows: (i) $f_1 = f - \varphi(f, h)$, (ii) for each k > 1, $f_k = f_{k-1} - \varphi(f_{k-1}, h)$. Then $\{f_k\}$ is a decreasing sequence of functions convergent pointwise to h^* , the upper envelope of h.

Proof. By Lemma 1 for each x in X and each $k \in Z^+$, we have $h^*(x) \leq f_{k+1}(x) \leq f_k(x)$. Suppose for some x, $\beta = \inf_k f_k(x)$ exceeds $h^*(x)$. Since h^* is u.s.c. there exists $\lambda > 0$ such that $\lambda < 1/2(\beta - h^*(x))$, and whenever $d(w, x) < \lambda$ then $h^*(w) < 1/2(\beta + h^*(x))$. Choose k so large that $f_k(x) - \beta < \lambda$. It follows that

$$\varphi(f_k, h)(x) = f_k(x) - f_{k+1}(x) < \lambda.$$

Hence there is a point w such that both $d(w, x) < \lambda$ and $h(w) > f_k(x) - \lambda$. But then $h^*(w) \ge h(w) > f_k(x) - \lambda > 1/2(\beta + h^*(x))$, and this contradicts the choice of λ .

If our function h is u.s.c., i.e., $h = h^*$, then the algorithm described in the statement of Theorem 1 produces a decreasing sequence of continuous functions convergent pointwise to h, and if h is majorized by a Lipschitz function, then by Lemma 1, we can generate such a sequence of Lipschitz functions. If X is compact, h will have a Lipschitz majorant, for h will attain a maximum value. Otherwise, no such majorant need exist. If X is unbounded, fix w and for each $n \in Z^+$ choose x_n such that $d(w, x_n) > n$. Then $h: X \to R$ defined by

$$h(x) = d(w, x_n)^2$$
, if $x = x_n$ for some n ,
= 0, otherwise,

is u.s.c. and has no Lipschitz majorant. If X is bounded but noncompact,

let $\{x_n\}$ be a sequence in X with no convergent subsequence. Define $h: X \to R$ by

$$h(x) = n,$$
 if $x = x_n$ for some n ,
= 0, otherwise.

Again h is u.s.c. with no Lipschitz majorant. Still, it is always easy to initiate the algorithm. Let $\psi: R \to (-1, 1)$ be a bicontinuous increasing bijection, e.g., $\psi(x) = x/(1 + |x|)$. Since ψ is increasing, if h is u.s.c., then $\psi \circ h$ will be u.s.c. Let g map each point of X to 1. Since $\psi \circ h$ is u.s.c. and for each x, $(\psi \circ h)(x) < g(x)$, by the remark following Lemma 1, we have for all x

$$g(x) - \varphi(g, \psi \circ h)(x) < 1.$$

Thus $f = \psi^{-1} \circ (g - \varphi(g, \psi \circ h))$ is a continuous majorant of h and can be used to initiate the algorithm.

2. RATE OF CONVERGENCE

Let X be an arbitrary metric space, $h: X \to R$ an upper semicontinuous function, and $f: X \to R$ a continuous function that majorizes h. Under what circumstances will the algorithm described in the previous section produce a sequence of continuous functions that converge uniformly to h? Continuity of h is an obvious necessary condition, but it is far from sufficient. Actually, uniform continuity of h is necessary in the following sense: if $h \in C(X, R)$ is not uniformly continuous, then there exists $f \in C(X, R)$ majorizing h for which $\{f_k\}$ defined by (i) $f_1 = f - \varphi(f, h)$, (ii) $f_k = f_{k-1} - \varphi(f_{k-1}, h)$, for k > 1, fails to converge uniformly to f; moreover, if h is bounded, we can choose f to be bounded. We first obtain a lemma that puts a limit on the rate of growth of $|f_k(x) - f(x)|$.

LEMMA 2. Let $f: X \to R$ be continuous and let $h: X \to R$ be arbitrary with $f \ge h$. Let $f_1 = f - \varphi(f, h)$, and for each k > 1, let $f_k = f_{k-1} - \varphi(f_{k-1}, h)$. Then for each $k \in \mathbb{Z}^+$ and for each x in X,

$$f_k(x) \ge f(x) + (1 - 2^k) \varphi(f, h)(x).$$

Proof. For k = 1, we actually have equality. Assume the inequality holds for k = j and set $\delta = \varphi(f, h)$. By the definition of δ for each $\varepsilon > 0$, there exists $y \in X$ for which $\rho[(x, f(x)), (y, h(y))] < \delta + \varepsilon$, whence

$$f_j(x) - \varepsilon \leq f(x) - \delta - \varepsilon < h(y) < f(x) + \delta + \varepsilon.$$

By the induction hypothesis

$$f_i(x) - \varepsilon < h(y) \le f_i(x) + 2^j \delta + \varepsilon,$$

and since $d(x, y) < 2^{j}\delta$, we have

$$\varphi(f_j,h)(x) \leq 2^j \delta + \varepsilon.$$

As a result,

$$f_{j+1}(x) = f_j(x) - \varphi(f_j, h)(x)$$

$$\geq [f(x) + (1 - 2^j)\delta] - 2^j\delta$$

$$= f(x) + (1 - 2^{j+1})\delta.$$

We also need an interposition theorem of Michael [4].

MICHAEL'S THEOREM. Let X be a topological space in which each closed set is a G_{δ} set. Suppose $h: X \to R$ is u.s.c., $g: X \to R$ is l.s.c., and $g \ge h$. Then there exists $f \in C(X, R)$ that ultra-strictly interposes [1] h and $g: h \le f \le g$, and whenever h(x) < g(x), we have h(x) < f(x) < g(x).

This result of course applies if X is metric. In this context suppose $h \in C(X, R)$ is not uniformly continuous. For some $\varepsilon > 0$ and for each $k \in Z^+$ there exists points x_k and y_k in X such that $d(x_k, y_k) < 2^{-(k+1)}\varepsilon$ and $h(y_k) > h(x_k) + \varepsilon$. Let $\psi: R \to (-1, 1)$ be a bicontinuous increasing bijection. Now $\{x_k: k \in Z^+\}$ can have no limit points, or else h would not be continuous. Thus $h^* X \to (-1, 1)$ defined by

$$h^*(x) = \psi(h(y_k)),$$
 if $x = x_k,$
= $\psi(h(x)),$ otherwise,

is u.s.c. Define $g^*: X \rightarrow (-1, 1]$ by

$$g^*(x) = \psi(h(y_k)),$$
 if $x = x_k,$
= 1, otherwise.

Since $\{x_k: k \in Z^+\}$ is closed, g^* is l.s.c. By Michael's theorem there exists $f^* \in C(X, (-1, 1])$ which ultra-strictly interposes h^* and g^* ; note that actually $f^* \in C(X, (-1, 1))$ so that $f = \psi^{-1} \circ f^* \in C(X, R)$. Clearly, $f \ge h$ and $f(x_k) = h(y_k)$. Now for each $k \in Z^+$,

$$\rho[(x_k, f(x_k)), (y_k, h(y_k))] < 2^{-(k+1)}\varepsilon,$$

whence $\varphi(f, h)(x_k) < 2^{-(k+1)}\varepsilon$. By Lemma 2,

$$f_k(x_k) \ge f(x_k) - 2^k \varphi(f, h)(x_k)$$
$$\ge h(y_k) - 2^k \cdot 2^{-k} - \varepsilon$$
$$> h(x_k) + \varepsilon/2.$$

We conclude that $\{f_k\}$ does not converge uniformly to h.

Our next goal is to show that if h is a bounded uniformly continuous function then uniform convergence occurs. We need the following simple fact.

LEMMA 3. Let $h: X \to R$ be arbitrary and let $f \in C(X, R)$ majorize h. Let $f_1 = f - \varphi(f, h)$, and for each k > 1, let $f_k = f_{k-1} - \varphi(f_{k-1}, h)$. Then for each $k \in Z^+$, $\sup_{x \in X} f_k(x) = \sup_{x \in X} h(x)$.

Proof. It suffices to show this is true for k = 1. Fix x in X and let $\varepsilon > 0$ be arbitrary. Suppose $\varphi(f, h)(x) = \delta$. Choose $y \in X$ for which $\rho[(x, f(x)), (y, h(y))] < \delta + \varepsilon$. In particular $f(x) < h(y) + \delta + \varepsilon$ whence $f_1(x) < h(y) + \varepsilon$. This proves $\sup_{x \in X} f_1(x) \leq \sup_{x \in X} h(x)$; the reverse inequality follows from Lemma 1.

THEOREM 2. Let $h: X \to R$ be a bounded uniformly continuous function on a metric space X, and let $f \in C(X, R)$ majorize h. Then if $f_1 = f - \varphi(f, h)$ and for each k > 1 $f_k = f_{k-1} - \varphi(f_{k-1}, h)$, then $\{f_k\}$ converges uniformly to h.

Proof. Let $M = \sup_{x \in X} |h(x)|$. Suppose the convergence is not uniform. Then for some $\varepsilon > 0$ there exists a sequence $\{x_n\}$ in X and a subsequence $\{f_{k_n}\}$ of $\{f_k\}$ such that for each n, $f_{k_n}(x_n) > h(x_n) + \varepsilon$. Choose $\lambda > 0$ such that whenever $d(x, y) < \lambda$ then $|h(x) - h(y)| < \varepsilon/2$, and set $\theta = \min\{\lambda, \varepsilon/2\}$. We claim that whenever $j \leq k_n$ that $\varphi(f_j, h)(x_n) \geq \theta$. If not, there exists $y \in X$ such that $\rho[(x_n, f_j(x_n)), (y, h(y))] < \theta$. It follows that $d(x_n, y) < \lambda$ and

$$h(y) > f_j(x_n) - \frac{\varepsilon}{2} \ge f_{k_n}(x_n) - \frac{\varepsilon}{2} > h(x_n) + \frac{\varepsilon}{2}$$

in violation of the choice of λ . Now choose *n* so large that $n\theta > 2M$. By Lemma 3, $\sup_{x \in X} f_1(x) \leq M$; so,

$$M \ge f_1(x_n) \ge \sum_{j=1}^{k_n} \varphi(f_j, h)(x_n) + h(x_n)$$
$$\ge \sum_{j=1}^n \varphi(f_j, h)(x_n) + h(x_n)$$
$$> 2M + h(x_n).$$

We have shown $h(x_n) < -M$, a contradiction.

Theorem 2 fails without further assumptions if h is allowed to be unbounded.

EXAMPLE 1. Let X be the following metric subspace of the line:

$$X = \{n^2: n \in \mathbb{Z}^+ \text{ and } n \ge 2\} \cup \{n^2 + 1: n \in \mathbb{Z}^+ \text{ and } n \ge 2\}.$$

Since distinct points in X have distance at least one from one another, each real function on X is uniformly continuous. Define $h: X \to R$ by

$$h(x) = 0, \qquad \text{if } x = n^2 \text{ for some } n,$$
$$= n, \qquad \text{if } x = n^2 + 1 \text{ for some } n$$

Let $f: X \to R$ map both n^2 and $n^2 + 1$ to $n, n = 2, 3, 4, \dots$. Note that for each $n, \varphi(f, h)(n) = 1$. Let $k \in Z^+$ be arbitrary and choose n so large that $n/2 > 2^k$. By Lemma 2,

$$f_k(n) \ge n + (1 - 2^k)(1)$$

 $> n - \frac{n}{2} > h(n) + \frac{1}{2}.$

Thus $\{f_k\}$ does not converge uniformly to h.

A generally weaker requirement than uniform convergence of $\{f_k\}$ is uniform convergence of $\{\varphi(f_k, h)\}$. Intuitively uniform convergence of the latter sequence means that eventually the points of the graph of f_k are uniformly close to the graph of h, but not necessarily measured vertically. If X is relatively nice (as described below) and h is a bounded continuous function, then $\{\varphi(f_k, h)\}$ will converge uniformly.

DEFINITION. A metric space $\langle X, d \rangle$ is radially connected if for each $(a, b) \in X \times X$ there exists a connected set K(a, b) containing both a and b such that for each $w \in K(a, b)$, $d(a, w) \leq d(a, b)$.

Evidently convex sets in normed linear spaces are radially connected. More generally, $\langle X, d \rangle$ is called *convex* if for each *a* and *b* in *X* there exists *m* in *X* such that d(a, m) = d(b, m) = (1/2) d(a, b) [7]. If, in addition, *X* is complete, then for each *a* and *b* in *X* there exists a path φ from *a* to *b* such that for each $\tau \in [0, 1]$, $d(a, \varphi(\tau)) = \tau d(a, b)$ and $d(b, \varphi(\tau)) = (1 - \tau) d(a, b)$ [2]. Thus, such spaces are radially connected. But there are other examples: a circle in the plane is radially connected.

LEMMA 4. Let X be a radially connected metric space, and let $h: X \to R$ and $f: X \to R$ be continuous with $f \ge h$. Then for each $k \in Z^+$, we have $\varphi(f_{k-1}, h)(x) \ge \varphi(f_k, h)(x)$. *Proof.* We first claim that if g is continuous and $g \ge h$ and $\varphi(g, h)(x) = \delta$, then for each $\varepsilon > 0$ there exists $y \in X$ such that

- (1) $d(x, y) \leq \delta + \varepsilon$,
- (2) $g(x) \delta \varepsilon \leq h(y) \leq g(x) \delta$.

This is clearly true if $\delta = 0$, for then g(x) = h(x), and we can choose y = x. Also, if $h(x) = g(x) - \delta$, then we can also choose y = x. Otherwise, since $h(x) \leq g(x)$ and $\delta \leq |g(x) - h(x)|$, we must have $h(x) < g(x) - \delta$. Without loss of generality we can assume that $\varepsilon < g(x) - \delta - h(x)$. Now pick (z, h(z)) for which $\rho[(x, g(x)), (z, h(z))] < \delta + \varepsilon$. We have

$$h(x) < g(x) - \delta - \varepsilon < h(z) < g(x) + \delta + \varepsilon.$$

Let K(x, z) be the connected subset of X containing x and z such that for each $w \in K(x, z)$, $d(x, w) \leq d(x, z)$. Since h(K(x, z)) is connected, $\exists y \in K(x, z)$ such that $h(y) = g(x) - \delta - \varepsilon$. Since $d(x, y) \leq d(x, z) < \delta + \varepsilon$, this choice of y works, and the claim is established.

Suppose now that f_{k-1} has been defined. Of course $f_k(x) = f_{k-1}(x) - \varphi(f_{k-1}, h)(x)$. By the above argument with $g = f_{k-1}$ for each $\varepsilon > 0$, there exists $y \in X$ for which

(1)
$$d(x, y) \leq \varphi(f_{k-1}, h)(x) + \varepsilon$$
,

(2) $f_k(x) - \varepsilon \leq h(y) \leq f_k(x)$.

It follows that $\rho[(x, f_k(x)), (y, h(y))] \leq \varphi(f_{k-1}, h)(x) + \varepsilon$, whence $\varphi(f_k, h)(x) \leq \varphi(f_{k-1}, h)(x)$.

We remark that if X is actually a closed subset of \mathbb{R}^n , then one can show that strict inequality occurs; i.e., whenever $\varphi(f_{k-1}, h)(x) \neq 0$, we have $\varphi(f_k, h)(x) < \varphi(f_{k-1}, h)(x)$.

THEOREM 3. Let X be a radially connected metric space. Let $h: X \to R$ be a bounded continuous function and let $f: X \to R$ be a continuous function that majorizes h. Let $f_1 = f - \varphi(f, h)$, and for each k > 1, let $f_k = f_{k-1} - \varphi(f_{k-1}, h)$. Then $\{\varphi(f_k, h)\}$ converges uniformly to the zero function.

Proof. If the convergence is not uniform for some $\varepsilon > 0$ and for each $N \in \mathbb{Z}^+$, there exists k > N and $x \in X$ for which $\varphi(f_k, h)(x) > \varepsilon$. Since

$$f_1(x) \ge \sum_{j=1}^{\kappa} \varphi(f_j, h)(x) + h(x),$$

Lemma 4 says that $f_1(x) \ge k\varepsilon + h(x)$. Since N was arbitrary and h is bounded, f_1 cannot be bounded above, contradicting Lemma 3.

Theorem 3 fails if X is merely connected instead of radially connected.

EXAMPLE 2. For n = 3, 4, 5,... let A_n and B_n be the following subsets of the plane:

$$A_n = \{(n, y): 0 \le y \le 2\},\$$
$$B_n = \left\{ \left(n + \frac{1}{n}, y\right): 0 \le y \le 2 \right\}$$

Set $A = \bigcup_{n=3}^{\infty} A_n$ and $B = \bigcup_{n=3}^{\infty} B_n$ and let $C = \{(x, 2): x \ge 3\}$. Then $X = A \cup B \cup C$ as a metric subspace of the plane is polygonally connected, but is not radially connected. Define $h \in C(X, [-1, 0])$ by

$$h(x, y) = -1, \quad \text{if } (x, y) \in C \cup A,$$

= 0,
$$\text{if } (x, y) \in B \text{ and } y \leq 1,$$

= -y + 1,
$$\text{if } (x, y) \in B \text{ and } 1 < y \leq 2.$$

Let $f: X \to R$ be the zero function. For each $n \in \{3, 4, 5, ...\}$, a nearest point to (n, 0, 0) = (n, 0, f(n, 0)) on the graph of h is (n + 1/n, 0, 0); this remains true for $(n, 0, f_k(n, 0))$ as long as $f_k(n, 0) \ge -1/2$. Clearly, for all such k, $f_k(n, 0) = -2^{k-1}(1/n)$. Hence if k is arbitrary and we set $n = 2^k$, then $f_k(n, 0) = -1/2$ so that $\varphi(f_k, h)(n, 0) = 1/2$. Thus $\{\varphi(f_k, h)\}$ does not converge uniformly to zero.

Theorem 3 also fails without further assumptions if h is allowed to be unbounded.

EXAMPLE 3. We present an unbounded continuous function h with domain R^+ and a Lipschitz function f majorizing h for which $\{\varphi(f_k, h)\}$ fails to converge uniformly. We describe h by describing its graph: it is the infinite polygonal path in R^2 joining the following points in succession: (0, 0), (8/3, -3), (3, 0), (10/3, -3), (15/4, -4), (4, 0), (17/4, -4), (24/25, -5), (5, 0), (26/25, -5),.... Clearly, h is majorized by the zero function f. For n = 3, 4, 5,..., we have $\varphi(f, h)(n + 1/4) \leq 1/4$. Let $k \in Z^+$ be arbitrary and choose $n \geq 8$ so large that $2^{k-2} \leq n$. By Lemma 2, we have

$$f_k\left(n+\frac{1}{4}\right) \ge (1-2^k)\left(\frac{1}{4}\right) \ge -n+\frac{1}{4}.$$

Now if $d(x, n + 1/4) \leq 1/8$, we have $h(x) \leq -n$. Thus for each $x \in X$, we obtain $\rho[(n + 1/4, f_k(n + 1/4)), (x, h(x))] \geq 1/8$, whence $\varphi(f_k, h)(n + 1/4) \geq 1/8$.

For uniformly continuous h, uniform convergence of $\{f_k\}$ is equivalent to uniform convergence of $\{\varphi(f_k, h)\}$. One direction is immediate, for

$$f_k(x) - h(x) = \sum_{j=k}^{\infty} \varphi(f_j, h)(x) \ge \varphi(f_k, h)(x).$$

On the other hand, suppose $\{\varphi(f_k, h)\}$ converges uniformly to zero. Let $\varepsilon > 0$ be arbitrary and choose $\delta < \varepsilon/2$ such that whenever $d(w, z) < \delta$, then $|h(w) - h(z)| < \varepsilon/2$. Choose N so large that for each k > N and for all x, $\varphi(f_k, h)(x) < \delta$. Fix $x \in X$ and k > N and choose w in X such that $\rho[(x, f_k(x)), (w, h(w))] < \delta$. Since $d(x, w) < \delta$, we have $|h(w) - h(x)| < \varepsilon/2$, and since $\delta < \varepsilon/2$, it follows that $|f_k(x) - h(x)| < \varepsilon$. It should be noted that the same reasoning can be used to prove the following fact: if X and Y are arbitrary metric spaces, then the Hausdorff metric as applied to graphs of uniformly continuous functions from X to Y gives the topology of uniform convergence. This equivalence is the basis for a number of papers in constructive approximation theory (see, e.g., [5, 8, 9, 11]).

REFERENCES

- 1. J. BLATTER AND G. SEEVER, Interposition of semicontinuous functions by continuous functions, *in* "Analyse Fonctionelle et Applications (Comptes rendus du Colloque d'Analyse, Rio de Janeiro, 1972)," pp. 27–51, Hermann, Paris, 1975.
- 2. L. BLUMENTHAL, "Theory and Applications of Distance Geometry," Oxford Univ. Press (Clarendon), 1953.
- 3. H. HAHN, Über halbstetige und unstetige funktionen, Sitzungsber. Akad. Wiss. Wien Abt. Ha 126 (1917), 91-110.
- 4. E. MICHAEL, Continuous selections, I, Ann. of Math. 63 (1956), 361-382.
- V. POPOV, Approximation of convex functions by algebraic polynomials in Hausdorff metric, Serdica 1 (1975), 386–398.
- 6. R. T. ROCKAFELLAR, "Convex Analysis," Princeton Univ. Press, Princeton, N.J., 1970.
- 7. D. ROLFSEN, A metric characterization of the 3-cell, Fund. Math. 68 (1970), 215-223.
- 8. BL. SENDOV, Several questions on the theory of approximation of functions and sets in the Hausdorff metric, *Uspekhi Mat. Nauk.* 24 (1969), 141–178.
- 9. BL. SENDOV, AND B. PENKOV, Hausdorffsche metrik und approximation, Numer. Math. 9 (1966), 214-226.
- 10. H. TONG, Some characterizations of normal and perfectly normal spaces, *Duke Math. J.* 19 (1952), 289–292.
- 11. V. VESELINOV, Approximation of unbounded functions with linear positive operators in Hausdorff metric, C. R. Bulg. Acad. Sci. 22 (1969), 499–502.