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1. INTRODUCTION

A real valued function h defined on a topological space X is called upper
semicontinuous (u.s.c.) if any of the following equivalent conditions is
satisfied:

(1) for each ex E R, h 1(( - CD, ex)) is open in X;

(2) for each x in X and e> 0 there exists a neighborhood V(x, e) of x
such that h(z) < h(x) + e, provided z E V(x, e);

(3) the hypograph of h, {(x, ex): ex~h(x)}, is closed in Xx R.

We call h: X ---> R lower semicontinuous (l.s.c.) if - h is u.s.c. Those
topological spaces for which each upper semicontinuous function is the
pointwise limit of a decreasing sequence of continuous functions are the
perfectly normal.\paces [10], i.e., spaces in which each closed subset is a G,\
set. That such approximations exist for metric spaces was first proved by
Hahn [3]. It is the purpose of this article to set forth in the context of
metric spaces a natural geometric algorithm that yields such a sequence of
continuous functions, beginning with any continuous function f majorizing
our u.s.c. function. If f is Lipschitz, then the algorithm will generate
Lipschitz functions.

Before describing the algorithm, we recall that if h: X ---> R is arbitrary,
then the upper envelope h* of h is defined as

h*(x)=sup{limsuph(xn ): lim xn=x}.
n --+ 'x.
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Alternatively, h* is that function whose hypograph is the closure of the
hypograph of h [6]. Thus, h* is the smallest extended real valued u.s.c.
function that majorizes h. We shall also need a metric for X x R. If d is the
metric for X, we employ the hox metric:

2. THE ALGORITHM

LEMMA 1. Let (X, d) he a metric space. Let h: X ----> R he arhitrary, and
suppose IE C(X, R) majorizes h. Define <pU; h): X ----> R by

<pU; h)(x) = inf{p[(x,f(x)), (y, h(y))]: y EX}.

Then I ~ <pU, h) is continuous and majorizes h*, the upper envelope of h. Iff
is Lipschitz, then so is I ~ <pCf, h).

Proof First, notice that <pU; h)(x) just gives the distance from (x,f(x))
to the graph of h. Since (x,:x) ----> the distance of (x,:x) from the graph of his
a Lipschitz function on X x R with Lipschitz constant one and
x----> (x,/(x)) is continuous, their composition <p(f h) is continuous. Sup
pose now that I is Lipschitz with constant K ~ 1. We then have
p[(x,f(x)), (w,f(w))] ~ Kd(x, w) for each x and w in X. Since the dif
ference between the distances of any two points in a metric space to a given
set is less than or equal to the distance between the two points, we get

I <pU; h)(x) - <pU; h)(w)1 ~ Kd(x, w),

whence <pU; h) is Lipschitz. Thus, f - <pCf, h) is Lipschitz (with constant
2K).

To show that 1- <pU; h) majorizes h*, fix x in X and choose {xn} con
vergent to x for which limn ". h(xn)=h*(x). Sincefis u.s.c. andf~h, we
have f(x) - h*(x) ~ 0 and

f(x) - h*(x) = p[(x, f(x)), (x, h*(x))]

= sup inf{p[(x, f(x)), (xn, h(xn))]: n ~ k}
k c Z"

~ inf{p[(x, f(x)), (xn, h(xn))]: n E Z+ ]

~ inf{p[(x,f(x)), (y, h(y))]: y E X}

= <pCf, h)(x).

We remark that <p(f h) can be the zero function even if for all x,
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f(x) > h(x). For example, let X = [0, 1], let f be the zero function on X,
and let h: X ---+ [ -1,0) be given by

1
h(x)= --

2n
'

= -1,

if x = in' q an odd integer,

otherwise.

However, if h is u.s.c. at x and h(x) <f(x), then ({J(f, h)(x) > 0; otherwise,
for some sequence {xn} convergent to x, we would have limn ~ 00 h(xn) =
f(x) > h(x).

If we iterate the procedure described above, we produce a decreasing
sequence of functions convergent to h*. In the sequel we shall use the
notation ({J(f, h) described in Lemma 1 freely.

THEOREM 1. Let <X, d) he a metric space and let h: X ---+ R. Iff is a
continuous function that majorizes h, define a sequence of continuous
functions {j~} as follows: (i)f,=f-({J(j;h), (ii)for each k>l, fk=
fk .. 1 - ({J(fk - , , h). Then {f~} is a decreasing sequence of functions con
vergent pointwise to h*, the upper envelope of h.

Proof By Lemma 1 for each x in X and each k E Z+, we have h*(x) ~
fk+l(X)~fk(X).Suppose for some x, 13 = infkfk(x) exceeds h*(x). Since h*
is u.s.c. there exists A>° such that A< 1/2(13 - h*(x)), and whenever
d(w, x) <;. then h*(w) < 1/2(13 + h*(x)). Choose k so large that
fk(X) - 13 < A. It follows that

({J(fk> h)(x) = fk(X) - fk+ ,(x) < A.

Hence there is a point w such that both d(W,X)<A and h(w»f~(x)-A.

But then h*(w) ~ h(w) > fk(X) -), > 1/2(13 + h*(x)), and this contradicts
the choice of X

If our function h is U.S.C., i.e., h = h*, then the algorithm described in the
statement of Theorem 1 produces a decreasing sequence of continuous
functions convergent pointwise to h, and if h is majorized by a Lipschitz
function, then by Lemma 1, we can generate such a sequence of Lipschitz
functions. If X is compact, h will have a Lipschitz majorant, for h will
attain a maximum value. Otherwise, no such majorant need exist. If X is
unbounded, fix wand for each n E Z+ choose X n such that d(w, x n ) > n.
Then h: X ---+ R defined by

h(x) = d(w, x,y,

=0,

if x = X n for some n,

otherwise,

is u.s.c. and has no Lipschitz majorant. If X is bounded but noncompact,
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let {XII} be a sequence In X with no convergent subsequence. Define
h: X -+ R by

h(x)=n,

=0,

if X= XII for some n,

otherwise.

Again h is U.S.c. with no Lipschitz majorant. Still, it is always easy to
initiate the algorithm. Let 1jJ: R -+ ( ~ 1, 1) be a bicontinuous increasing
bijection, e.g., ljJ(x) = x/(l + Ixl). Since IjJ is increasing, if h is u.s.c., then
IjJ 8 h will be u.s.c. Let g map each point of X to 1. Since IjJ h is u.s.c. and
for each x, (ljJ o h)(x)<g(x), by the remark following Lemma 1, we have
for all x

g(x)~cp(g,1jJ h)(x)<1.

Thus f = IjJ I (g ~ cp( g, IjJ "h)) is a continuous majorant of h and can be
used to initiate the algorithm.

2. RATE OF CONVERGENCE

Let X be an arbitrary metric space, h: X -+ R an upper semicontinuous
function, and f: X -+ R a continuous function that majorizes h. Under what
circumstances will the algorithm described in the previous section produce
a sequence of continuous functions that converge uniformly to h? Con
tinuity of h is an obvious necessary condition, but it is far from sufficient.
Actually, uniform continuity of h is necessary in the following sense: if
hEC(X, R) is not uniformly continuous, then there exists fEC(X, R)

majorizing h for which lfd defined by (i)fl=f~cpU;h),

(ii)fk=f~ I~CPU~ l,h), for k>l, fails to converge uniformly to I
moreover, if h is bounded, we can choose f to be bounded. We first obtain
a lemma that puts a limit on the rate of growth of If~(x) -f(x)l.

LEMMA 2. Let f: X -+ R he continuous and let h: X -+ R he arhitrary with
I ~ h. Let II = I - cpU; h), and for each k> 1, let f~ = fk 1 ~ CP(fk I' h).
Then fe)r each k E Z + and PH each X in X,

f~(x) ~f(x) + (1 ~ 2k) cpU; h)(x).

Proof: For k = I, we actually have equality. Assume the inequality
holds for k = j and set b = cpU; h). By the definition of b for each <: > 0,
there exists yEX for which p[(x,f(x)), (y, h(y))J <b+<:, whence

f(x) - <: ~f(x) - b - <: < h(y) <f(x) + b + E.
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By the induction hypothesis

fj(x) - I; < h(y) ~fj(x)+ 2iJ + 1;,

and since d(x, y) < 2i J, we have

<p(fj, h)(x) ~ 2iJ + 1;.

As a result,

f i +,(x) =f/x) - <p(.fj, h)(x)

;:, [f(x) + (1 - 2i )J] - 2i J

=f(x)+(1-2 J +')J.

We also need an interposition theorem of Michael [4].

35

MICHAEL'S THEOREM. Let X be a topological space in which each closed
set is a Gb set. Suppose h: X ---+ R is u.s.c., g: X ---+ R is l.s.c., and g;:' h. Then
there exists f E C(X, R) that ultra-strictly interposes [1] hand g: h ~ f ~ g,
and whenever h(x) < g(x), we have h(x) <f(x) < g(x).

This result of course applies if X is metric. In this context suppose
hE C(X, R) is not uniformly continuous. For some I: > 0 and for each
k E Z+ there exists points Xk and Yk in X such that d(xb yd < 2 (k + 1)1;

and h(Yk»h(Xk)+I;. Let t/!:R---+(-I, 1) be a bicontinuous increasing
bijection. Now {Xk: k E Z+ } can have no limit points, or else h would not
be continuous. Thus h* X ---+ (-I, 1) defined by

h*(x) = t/!(h(Yk)),

= t/!(h(x)),

is u.s.c. Define g*: X ---+ ( -1, 1] by

= 1,

otherwise,

otherwise.

Since {Xk: k E Z+} is closed, g* is l.s.c. By Michael's theorem there exists
f* E C(X, (-1,1]) which ultra-strictly interposes h* and g*; note that
actually f* E C( X, ( - 1, 1)) so that f = t/! - ,"f* E C( X, R). Clearly, f;:' h
andf(xd=h(Yk)' Now for each kEZ+,

P[(Xb f(xd), (Yb h(yd)] < 2-(k+ 1)1;,
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whence cpU; h)(xd < 2 (k + I If:. By Lemma 2,

J~{xd ?-I{xk )- 2kcpU; h)(xd

?-h{Yk)-2k '2 k Ie;

> h{xd + e;/2.

We conclude that U~} does not converge uniformly to h.
Our next goal is to show that if h is a bounded uniformly continuous

function then uniform convergence occurs. We need the following simple
fact.

LEMMA 3. Let h: X -+ R be arbitrary and let f E C(X, R) majorize h. Let
fl = f - cpU; h), and for each k > I, let fk = fk I - CP(fk I' h). Then for each
kEZ+, SUPXEXJ~{X)=SUPXEXh{x).

Proof It suffices to show this is true for k = I. Fix x in X and let £ > 0
be arbitrary. Suppose cp(f,h)(x)=b. Choose yEX for
p[{x,f{x)), (y, h{y))] < b + £. In particular f{x) < h{y) + b + £

fl{x)<h{y)+£. This proves sUPxExfl{x):(SUP'EXh{X); the
inequality follows from Lemma 1.

which
whence
reverse

THEOREM 2. Let h: X -+ R be a bounded uniformly continuousfunction on
a metric space X, and letfE C(X, R) majorize h. Then iffl = f ~ cp(f, h) and
for each k > 1J~ =J~ 1 - cpU~ _ I' h), then {i~} converges un!formly to h.

Proof Let M=SUPxEXlh{x)l. Suppose the convergence is not uniform.
Then for some £ > 0 there exists a sequence {XII} in X and a subsequence
U~"} of U~} such that for each n, fdxlI) > h{xn)+ £. Choose J. > 0 such
that whenever d{x, y) < J. then [h{x) - h{ y)[ < £/2, and set 8 = min {Ie, £/2 }.
We claim that whenever j:(k" that cp(fj, h)(xn)?-8. If not, there exists
yEXsuch that p[{x",flx,,)),(y,h{y))]<(). It follows that d{x,,,y)<i.
and

I; I: f;
h{y) > ij{x,,) - 2?- .h,{x,,) -2 > h(xn)+2

in violation of the choice of A. Now choose n so large that n8> 2M. By
Lemma 3, supxExfl{x):(M; so,

k"

M?-ft{x,,)?- L cp(fj' h)(xn)+h(x,,)
I~I

"?- L cpUj, h)(xn)+ h(xn)
j~1

> 2M +h{x,,).

We have shown h{xn ) < -M, a contradiction.
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Theorem 2 fails without further assumptions if h IS allowed to be
unbounded.

EXAMPLE 1. Let X be the following metric subspace of the line:

X = {n 2
: n E Z+ and n ? 2} u {n 2 + 1: n E Z+ and n? 2}.

Since distinct points in X have distance at least one from one another, each
real function on X is uniformly continuous. Define h: X ~ R by

h(x) = 0,

=n,

if x = n2 for some n,

if x = n2 + 1 for some n.

Letf: X ~ R map both n2 and n2 + 1 to n, n = 2,3,4,.... Note that for each
n, <p(f, h)(n) = 1. Let k E Z + be arbitrary and choose n so large that
n/2 > 2k

. By Lemma 2,

fk(n)?n+ (l-2k )(1)

n I
>n-"2>h(n)+"2'

Thus {fk} does not converge uniformly to h.
A generally weaker requirement than uniform convergence of {fk} is

uniform convergence of {<PUb h)}. Intuitively uniform convergence of the
latter sequence means that eventually the points of the graph of fk are
uniformly close to the graph of h, but not necessarily measured vertically. If
X is relatively nice (as described below) and h is a bounded continuous
function, then {<PUk, h)} will converge uniformly.

DEFINITION. A metric space <X, d) is radially connected if for each
(a, b) E X X X there exists a connected set K( a, b) containing both a and b
such that for each WE K(a, b), d(a, w) ~ d(a, b).

Evidently convex sets in normed linear spaces are radially connected.
More generally, <X, d) is called convex if for each a and b in X there exists
m in X such that d(a, m) = d(b, m) = (1/2) d(a, b) [7]. If, in addition, X is
complete, then for each a and b in X there exists a path <P from a to b such
that for each TE [0, 1], d(a, <p(T)) = Td(a, b) and d(b, <p(T)) = (1 - T) d(a, b)
[2]. Thus, such spaces are radially connected. But there are other exam
ples: a circle in the plane is radially connected.

LEMMA 4. Let X be a radially connected metric space, and let h: X ~ R
and f: X ~ R be continuous with f? h. Then for each k E Z +, we have

<PUk I' h)(x) ? <PUk, h)(x).
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Prool We first claim that if g is continuous and Ii? hand
<p( g, h)(x) = £5, then for each I: > °there exists y E X such that

(1) d(x, y) ~ £5 + e,

(2) g(x) - £5 - e ~ h(y) ~ g(x) - £5.

This is clearly true if £5 = 0, for then g(x) = h(x), and we can choose y = x.
Also, if h(x)=g(x)-£5, then we can also choose y=x. Otherwise, since
h(x)~g(x) and £5~lg(x)-h(x)l, we must have h(x)<g(x)-£5. Without
loss of generality we can assume that /; < g(x) - £5 - h(x). Now pick
(z, h(z)) for which p[(x, g(x)), (z, h(z))] < £5 + c:. We have

h(x) < g(x) - £5 - /; < h(z) < g(x) + £5 + £.

Let K(x, z) be the connected subset of X containing x and z such that for
each wEK(x,z), d(x,w)~d(x,z). Since h(K(x,z)) is connected,
3YEK(x,z) such that h(y)=g(x)-£5-e. Since d(x,y)~d(x,z)<£5+e,

this choice of y works, and the claim is established.
Suppose now that Ik I has been defined. Of course f~(x) =

f~ I (x) - <pU~ I' h)(x). By the above argument with g = f~ I for each
e> 0, there exists y E X for which

(I) d(x,y)~<p(fk hh)(x)+/;,

(2) Ik(x) - e~ h(y) ~f~(x).

It follows that p[(x,f~(x)), (y, h(y))] ~<pU~ I' h)(x)+e, whence
<P(fb h)(X)~<P(fk-I' h)(x).

We remark that if X is actually a closed subset of R n
, then one can show

that strict inequality occurs; i.e., whenever <P(fk l,h)(x)#O, we have
<P(fb h)(x) < <pU~ h h)(x).

THEOREM 3. Let X be a radially connected metric space. Let h: X ---> R
be a bounded continuous function and let I: X ---> R be a continuous function
that majorizes h. Let fl = f - <p(f, h), and for each k> I, let
fk = f~ I - <pU~ - I , h). Then {<P(fk, h)} converges uniformly to the zero
function.

Proof If the convergence is not uniform for some I; > 0 and for each
NEZ +, there exists k> N and x E X for which <P(fb h)(x) > e. Since

k

fl(x)? I <pUj, h)(x) + h(x),
i~1

Lemma 4 says that fl (x)? ke + h(x). Since N was arbitrary and h is boun
ded, II cannot be bounded above, contradicting Lemma 3.

Theorem 3 fails if X is merely connected instead of radially connected.
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EXAMPLE 2. For n = 3, 4, 5, ... let An and Bn be the following subsets of
the plane:

An = {(n, y): °~ y ~ 2},

Bn={(n+~,Y):0~y~2}.

Set A=U~~3An and B=U~~3Bn and let C={(x,2):x~3}. Then
X = A u B u C as a metric subspace of the plane is polygonally connected,
but is not radially connected. Define hE C(X, [ - 1, °J) by

h(x, y)= -I, if(x, y)ECuA,

=0, if(x, y)EBand y~ I,

= -y+ I, if(x, y)EBand I < y~2.

Let.f: X ---> R be the zero function. For each n E {3, 4, 5, ... }, a nearest point
to (n, 0, 0) = (n, 0, f(n, 0)) on the graph of h is (n + lin, 0, 0); this remains
true for (n,O,.fk(n,O)) as long asrk(n,O)~ -1/2. Clearly, for all such k,
.f~(n,O)= ~2k-l(lln). Hence if k is arbitrary and we set n=2\ then
.f~(n, 0)= -1/2 so that CP(.fb h)(n, 0)= 1/2. Thus {cpU~, h)} does not con
verge uniformly to zero.

Theorem 3 also fails without further assumptions if h is allowed to be
unbounded.

EXAMPLE 3. We present an unbounded continuous function h with
domain R + and a Lipschitz function f majorizing h for which {CP(.fk' h)}
fails to converge uniformly. We describe h by describing its graph: it is the
infinite polygonal path in R 2 joining the following points in succession:
(0,0), (8/3, -3), (3,0), (10/3, -3), (15/4, -4), (4,0), (17/4, -4),
(24/25, -5), (5,0), (26/25, ~5), .... Clearly, h is majorized by the zero
function f For n = 3,4, 5, ..., we have cp(.f, h)(n + 1/4) ~ 1/4. Let k E Z+ be
arbitrary and choose n ~ 8 so large that 2k

2 ~ n. By Lemma 2, we have

Now if d(x, n + 1/4) ~ 1/8, we have h(x) ~ -no Thus for each x E X, we
obtain p[(n+1/4,.f~(n+1/4)),(x,h(x))]~1/8,whence cp(.fbh)(n+1/4)
~ 1/8.

For uniformly continuous h, uniform convergence of {j~} is equivalent
to uniform convergence of {CP(.fb h)}. One direction is immediate, for

,x'

.f~(x)-h(x)= L cp(Jj,h)(X)~CP(.fbh)(x).
i~k
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On the other hand, suppose : r.pU~, h)} converges uniformly to zero. Let
£> 0 be arbitrary and choose () < £/2 such that whenever d( w, ::) < (), then
Ih(w)-h(::)1 <1:/2. Choose N so large that for each k>N and for all x,
r.pU~, h)(x) < b. Fix x E X and k > N and choose II' in X such that
p[(x, f~(x)), (\1), h(w))] < b. Since d(x, w) < (), we have Ih(w) - h(x)1 < 0:/2,
and since b < 1'./2, it follows that If~(x) - h(x)1 < F.. It should be noted that
the same reasoning can be used to prove the following fact: if X and Yare
arbitrary metric spaces, then the Hausdorff metric as applied to graphs of
uniformly continuous functions from X to Y gives the topology of uniform
convergence. This equivalence is the basis for a number of papers in con
structive approximation theory (see, e.g., [5,8,9, 11]).
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